METABOLISM OF [3H]GIBBERELLIN A₅ IN DEVELOPING PHARBITIS NIL SEEDS

MASAJI KOSHIOKA,* RICHARD P. PHARIS, ROD W. KING,† NOBORU MUROFUSHI‡ and RICHARD C. DURLEY§

Plant Physiology Research Group, Department of Biology, The University of Calgary, Calgary, Alberta, T2N 1N4, Canada; † Division of Plant Industry, CSIRO, Canberra, Australia; ‡Department of Agricultural Chemistry, University of Tokyo, Bunkyo-Ku, Tokyo, Japan; §Department of Forest Science, Oregon State University, Corvallis, OR 97331-5704, U.S.A.

(Revised received 20 July 1984)

Key Word Index—Pharbitis nil; Convolvulaceae; metabolism; [3H]gibberellin A5; gibberellins; gibberellin glucosyl conjugates.

Abstract—The native gibberellin A₅ (GA₅), as [1-³H]GA₅ (3.2 Ci/mmol) was fed to seed capsules (0.58 µCi/capsule) of Pharbitis nil cv Violet at the 2-week stage of development, and its metabolism in the seeds was investigated after 43 hr. Extractable radioactivity in free GA metabolites was 38%, with 56% in GA glucosyl conjugate-like substances. Only 2.5% of the extractable radioactivity remained as [³H]GA₅. Tentative identifications, based on comparisons with authentic standards after sequential chromatography on silica gel partition column → gradient-eluted C₁₈ HPLC → isocratic-eluted C₁₈ HPLC-radiocounting (RC), showed that [³H]GA₅ was converted to at least six free GAs, GA₁, GA₃, GA₆, GA₈, GA₂₂, GA₂₉, a GA₅ methyl ester-like metabolite, and at least twelve GA glucosyl conjugate-like substances, GA₅-glucoside (GA₅-G), GA₅-glucosyl ester (GA₅-GE), GA₁-O(3)-G, GA₁-O(13)-G, GA₁-GE, GA₃-O(3)-G, GA₃-O(13)-G, GA₃-GE, GA₆-G or GE, GA₈-O(2)-G, GA₂₂-G or GE and GA₂₉-O(2)-G. After lower specific activity feeds of [1,2-³H]GA₅ (74 mCi/mmol; 0.1 µCi/capsule) at approximately the same stage of development, the presence of GA₁, GA₃, GA₅, GA₆, GA₈ and GA₂₉ was further confirmed by sequential (after C₁₈ HPLC-RC) capillary gas chromatography-selected ion monitoring (GC-SIM), using six characteristic ions. However, for GA₂₂ only a trace of the parent ion was present at the appropriate retention time.

INTRODUCTION

The gibberellins (GAs) GA₁ (2), GA₃ (10), GA₅ (15), GA₈ (8), GA₁₇ (25), GA₁₉ (26), GA₂₀ (1), GA₂₆ (22), GA₂₇ (23), GA₂₉ (6), GA₄₄ (24) and GA₅₃ (27) have been characterized from immature seeds of Pharbitis nil [1-8] but GA metabolism in that tissue has not been studied except to a limited extent by Barendse et al. [9] who investigated [3H]GA₁ metabolism and noted at least two unknown acidic metabolites, and the formation of [3H]GA₁ conjugate-like substances. In the present report, the metabolism of native GA₅ in developing (2 week old) seeds of P. nil cv Violet was studied in order to attempt characterization of its metabolites under circumstances where metabolism might be expected to approximate the norm (e.g. high specific radioactivity feeds where the level of GA₅ entering the seed was near the expected endogenous level). We also wanted to determine whether GAs is converted to GA₆ (20), since GA₆ has been suggested to be an intermediate in the conversions of [3H]GA₅ to $[^{3}H]GA_{3}$ [10], and $[^{3}H]GA_{5}$ to $[^{3}H]GA_{8}$ [11], and [3H]GA6 was shown to be converted to GA8 glucoside (9), and to GA₁/GA₃ and GA₈-like substances [12]. [3H]GA₅ of lower specific activity was also fed in an attempt to obtain levels of metabolites sufficient for characterization by the more definitive means of GC-SIM.

RESULTS AND DISCUSSION

Separation and identification of metabolites of [3H]GA₅ (Table 1)

Each of the silica gel partition column fraction groupings I, II, III and IV of the free GA metabolites from the [1-3H]GA₅ feed (Fig. 1) contained two to five significant peaks when run sequentially on gradient-eluted → isocratic-eluted C₁₈ HPLC-RC. The retention times (R_ts) of radioactive HPLC peaks from fraction I coincided with authentic GA5 and GA5 methyl ester [GA5-Me (18)]. The R_s of radioactive HPLC peaks from fraction II coincided with those of authentic GA5 and GA_6 . The R_1 s of radioactive HPLC peaks from fraction III coincided with those of GA₆, GA₁, GA₃ and GA₂₉. The R₁s of radioactive peaks from fraction IV coincided with authentic GA₈, GA₂₉ and GA₂₂ (19). From fraction IV two unknown polar radioactive compounds were obtained, one of which co-chromatographed with authentic GA₃₂ (14) (R_t 6-7 min), the other of which eluted earlier than GA₅₆ (21) (Table 1).

From the highly water-soluble fraction of the [1-3H]GA₅-fed sample, six significant peaks were observed on gradient-eluted C₁₈ HPLC-RC (Fig. 2). These gradient-eluted HPLC peak fraction groupings each contained from one to four peaks when run sequentially on isocratic-eluted C₁₈ HPLC-RC. The R_t of fraction I (Fig. 2) coincided with that of GA₈-O(2)-G (9) and one of three hydrolysis products (by enzyme, base or acid) of the peak coincided with GA₈ on gradient-eluted C₁₈ HPLC (Table 1). The R_ts of radioactive compounds in fraction II

^{*}Present address: National Institute of Agro-Environmental Sciences, Division of Pesticides, Kannondai 3-1-1, Yatabe-Machi, Tsukuba-gun, Ibaraki-Ken 305, Japan.

Table 1. Separation and identification of the metabolites of high specific activity [3 H]GA $_5$ (3.2 Ci/mmol, 0.58 μ Ci fed per capsule) in developing seed of P. nil by sequential silica gel partition \rightarrow gradient reverse-phase C $_{18}$ HPLC-RC \rightarrow isocratic-eluted C $_{18}$ HPLC-RC

	R_{t} (mi		
Unknown compounds and authentic standards (free GAs)	Gradient-eluted (10 → 73 % MeOH in aq. 1 % HOAc) HPLC-RC*	Isocratic or very shallow gradient-eluted HPLC-RC systems (A-E) (see Experimental)	Identity†
Free GAs from silica gel pa	rtition column fractions	•	
Fraction I (a)	32–33	9-10 (D) and	GA ₅ (15)
4.)	25.26	28-29 (C)	C1 11 (10)
(b)	35–36	19–21 (D)	GA ₅ -methyl ester (18)
Fraction II (a)	28–29	11-12 (C) and	GA ₆ (20)
(b)	32–33	21-22 (B) 28-29 (C)	GA ₅ (15)
Fraction III (a)	24–25	20 27 (C)	GA ₂₉ (6)
(b)	26-27	8-9 (C) and	GA ₃ (10)
(0)	20 2.	24–26 (A)	3 ()
		35-37 (E)	
(c)	26-27	8-9 (C) and	GA ₁ (2)
		28-30 (A)	
		40-42 (E)	
(d)	28–29	11–12 (C)	GA ₆ (20)
Fraction IV (a)	6–7		unknown
(b)	10-11		unknown
(c)	14–15		GA ₈ (8)
(d) (e)	24–25 28–29	13-14 (C)	GA ₂₉ (6) GA ₂₂ (19)
GA conjugates from HPLC		15-14 (C)	GA22 (17)
Fraction I (a)	13–14		GA ₈ -G (9)
Hydrolysate	14–15		GA ₈ (8)
Fraction II (a)	19–24		GA ₂₉ -G (7)
Hydrolysate	24-25		GA ₂₉ (6)
(b)	19-24	8-13 (A)	GA ₃ -O(3)-G (11) and
		contained 2 peaks	GA ₃ -O(13)-G (12)
Hydrolysate	26–27	24-26 (A)	GA ₃ (10)
(c)	19–24	10–16 (A)	GA ₁ -O(3)-G (3) and
	04.00	contained 2 peaks	GA ₁ -O(13)-G (4)
Hydrolysate	26–27 25, 27	28-30 (A)	GA_1 (2)
Fraction III (a)	25–27 26, 27	11–13 (A)	GA ₃ -O(3)-G (11)
Hydrolysate	26–27 25–27	24-26 (A) 19-21 (A)	GA ₃ (10) GA ₃ -GE (13)
(b) Hydrolysate	25–27 26–27	24-26 (A)	GA ₃ -GE (13) GA ₃ (10)
(c)	25-27	13-16 (A)	GA ₁ -O(3)-G (3)
Hydrolysate	26–27	28-30 (A)	GA ₁ (2)
(d)	25–27	21-23 (A)	GA ₁ -GE (5)
Hydrolysate	26–27	28-30 (A)	GA ₁ (2)
Fraction IV (a)	28-30	16–17 (B)	GA ₆ -G or -GE
Hydrolysate	29	11-12 (C) and	GA ₆ (20)
	** **	21-22 (B)	G4 G GE
(b)	28–30	24-25 (B)	GA ₂₂ -G or -GE
Hydrolysate	29	13-14 (C) 16-18 (C)	GA ₂₂ (19)
Fraction V (a)	31-33 32-33	16-18 (C) 27-29 (C)	GA ₅ -G (16) GA ₅ (15)
Hydrolysate (b)	31-33	21-23 (C) 21-22 (C)	GA ₅ -GE (17)
Hydrolysate	32-33	27-29 (C)	GA ₅ (15)
Standards		, ,	• • •
GA ₁ (2)	26–27	8-9 (C) and	
		28-30 (A)	
		40-42 (E)	
GA_1 - $GE(5)$	25–26 [13, 15]		
GA ₁ -O(3)-G (3)	23–25 [13, 15]		
GA_1 -O(13)-G (4)	21–24 [13, 15]		

Table 1. (Continued)

	R_t (mix	n) of peak	
Unknown compounds and authentic standards (free GAs)	Gradient-eluted (10 → 73 % MeOH in aq. 1 % HOAc) HPLC-RC*	Isocratic or very shallow gradient-eluted HPLC-RC systems (A-E) (see Experimental)	Identity†
GA ₃ (10)	26–27	8–9 (B) and	
		24-26 (A)	
		35-37 (E)	
GA ₃ -GE (13)	25–26 [13, 15]	` ,	
GA ₃ -O(3)-G (11)	23-25[13, 15]		
GA ₃ -O(13)-G (12)	21-24[13, 15]		
GA ₅ (15)	32–33	9-10 (D) and	
-		27-29 (C)	
GA ₅ -G (16)	31-32 [15]		
GA ₅ methyl ester (18)	35–36	19–21 (D)	
GA ₆ (20)	28-29	11-12 (C) and 21-22 (B)	
GA ₈ (8)	14–15		
GA ₈ -O(2)-G (9)	13–14		
GA ₂₂ (19)	28-29	13-14 (C)	
GA ₂₉ (6)	24-25		
GA ₃₂ (14)	6–7		
GA ₅₆ (21)	13-14		

^{*}As shown in Figs. 1 and 2.

†Identifications based on sequential silica gel partition \rightarrow gradient-eluted HPLC \rightarrow isocratic eluted HPLC R_i s, relative to R_i s of authentic GAs and GA-glucosides (-G) and glucosyl esters (-GE), and on the expected HPLC R_i (i.e. 1 to several min earlier than the free GA moiety) of GA glucosyl conjugates from refs. [13] and [15], and on the R_i of their free GA moiety on gradient-eluted and/or isocratic-eluted HPLC after enzymatic hydrolysis.

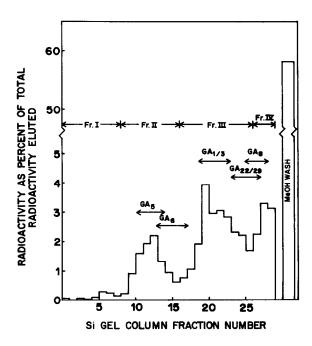


Fig. 1. Silica gel partition column chromatogram of the ethyl acetate-methanol-soluble portion of a methanolic extract of *P. nil* seeds incubated with [³H]GA₅ for 43 hr.

(Fig. 2) coincided with the expected R_{rs} [13] on isocraticeluted C_{18} HPLC for GA_{29} -O(2)-G (7), GA_{1} -O(3)-G (3), GA_1 -O(13)-G (4), GA_3 -O(3)-G (11) or GA_3 -O(13)-G (12), respectively (Table 1). Their hydrolysis products coincided on gradient and/or isocratic C₁₈ HPLC with GA₂₉, GA₁ or GA₃ (Table 1). The R₁s of radioactive compounds in fraction III (Fig. 2) coincided on isocraticeluted C₁₈ HPLC with the expected R_is [13] for GA₁-O(3)-G, GA_1 -GE (5), GA_3 -O(3)-G or GA_3 -GE (13) and their hydrolysis products coincided on gradient- and/or isocratic-eluted C₁₈ HPLC with GA₁ and GA₃ (Table 1). Fraction IV (Fig. 2) may contain GA₆ glucosyl conjugate and GA22 glucosyl conjugate, since the Rs of the hydrolysis products of fraction IV (Fig. 2) coincided on gradient- and/or isocratic-eluted C₁₈ HPLC with authentic GA₆ and GA₂₂ (Table 1). The radioactive compounds in fraction V (Fig. 2), when chromatographed subsequently on isocratic-eluted C_{18} HPLC, coincided with the expected R₁s of GA₅-G (16) or GA₅-GE (17), and their hydrolysis products coincided with GA₅ on gradienteluted HPLC (Table 1).

Low specific activity feeds of $[1,2^{-3}H]GA_5$ were also made to developing seed capsules for more definitive identification of metabolites. After 43 hr, 1.2×10^6 dpm was extracted from the 90 seeds (4.3 g) obtained from 57 capsules, which represents 9.5% of the radioactivity fed to the capsule. The elution profiles of the silica gel partition column and subsequent HPLC were similar to the high

specific activity feeds with regard to the qualitative spectrum of metabolites, although there were quantitative differences (see Table 4). The results of sequential analysis by silica gel partition $\rightarrow C_{18}$ HPLC \rightarrow GC-SIM are shown in Tables 1 and 3. Gibberellins A_1 , A_3 , A_5 , A_6 , A_8 and A_{29} were identified using GC-SIM for six characteristic ions (Table 3). The GA_{22} -like compound (silica gel fraction IV, gradient-eluted HPLC R_t 28–29 min) was monitored at m/z 504 [M]⁺, 489, 472, 401, 387 and 370, which are characteristic of GA_{22} -Me, TMSi. However, only a trace of the parent ion at m/z 504 was found at R_t 13.6 min, which corresponds with the R_t of GA_{22} -Me, TMSi.

23 $R_1 = OH$ $R_2 = OH$ 24 $R_1 = H$ $R_2 = H$

Metabolism of high specific activity [3H]GA₅ (Table 2)

After 43 hr, 3.96×10^6 dpm was extracted from the 31 seeds (1.53 g) obtained from 28 capsules, which represents 11% of the radioactivity fed to the capsule. Of the extracted radioactivity, 38.4% existed as free GAs, with 56.4% as GA glucosyl conjugate-like substances. Based on the identifications noted above, the main metabolites of [3H]GA₅ were [3H]GA₁, [3H]GA₃ and their purported glucosyl conjugates, i.e. [3H]GA₁-O(3)-G, [3H]GA₃-O(13)-G, [3H]GA₃-GE, [3H]GA₃-O(3)-G, [3H]GA₃-O(13)-G and [3H]GA₃-GE (Table 2). Thus, 22.7% of the extracted radioactivity was in the form of C-3 hydroxy-

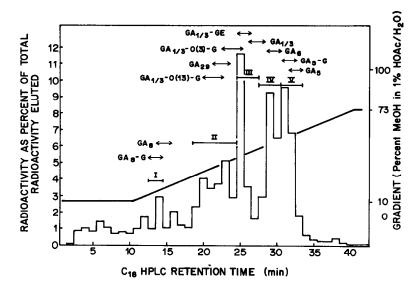


Fig. 2. Gradient-eluted reverse phase C₁₈ HPLC profile of the combined highly water-soluble fraction [e.g. methanol wash from silica gel partition column chromatography (Fig. 1) plus the water-soluble fraction in the extraction procedure [14]].

lated GA metabolites, [3H]GA₁, [3H]GA₃ and their purported glucosyl conjugates. However, the percentage of [3H]GA3 and its conjugates may be underestimated if loss of ³H at C-1 occurred during metabolism. Only 9.6% of the extracted radioactivity remained as GA₅ or its conjugates [[3H]GA₅ (2.5%), [3H]GA₅-Me-like substance (0.4%) and [3H]GA₅ glucosyl conjugate-like substances (6.7%)]. The [3H]GA₅-Me-like substance was classed as a [3H]GA₅ metabolite, rather than as an artefact of our extraction and purification procedure because the methyl ester of GA₅ was not observed in another feeding where authentic [³H]GA₅ was subjected to the same methods [14] in the presence of a plant extract (M. Koshioka, A. Jones and R. P. Pharis, unpublished work). As expected [11, 12], [3H]GA₈ and a GA₈ glucoside-like substance were observed, but the conversion rate was lower than that reported for developing bean seeds [11]. [3H]GA₆ and a [3H]GA₆ glucosyl conjugatelike compound were observed as significant peaks, i.e. 4.5 and 1.1%, respectively (Table 2), and this suggests that [3H]GA₆ exists as an intermediate in metabolism from $[^3H]GA_5$ to $[^3H]GA_1$, although $[^3H]GA_3$ and/or ³H]GA₂₉ have also been proposed as intermediates [10–12]. It is noteworthy that a GA_{22} -like compound (i.e. silica gel gradient-eluted HPLC → isocratic-eluted HPLC → capillary GC R_is the same as authentic GA₂₂, with GC-SIM for low specific activity feeds also yielding a trace of the parent ion at m/z 504) is present, as is a GA_{22} glucosyl conjugate-like compound whose isocratic-eluted HPLC R_r (Table 1) is consistent with that expected of a GA₂₂ glucosyl conjugate [13, 15]. The GA₂₂ glucosyl conjugate-like substance eluting from the isocratic HPLC was then subjected to enzyme hydrolysis, and the resulting hydrolysate yielded a radioactive compound which subsequently co-chromatographed with authentic GA22 on isocratic HPLC solvent C (Table 1). A tentative scheme for the metabolism of [3H]GA5 in P. nil seeds is shown in Fig. 3.

The effect of increasing the dosage of GA₅ by a factor of $7.45 \times$ (i.e. from 59.6 ng applied per capsule in the high specific activity feeds to 444 ng applied per capsule in the low specific activity feeds) is noted in Table 4 for both free GA and GA conjugate-like metabolites. While there are no remarkable differences with regard to the proportion of total free GA metabolites relative to GA conjugate-like metabolites, within each group several trends are apparent. Firstly, within the free GA metabolites, increasing the uptake of GA₅ especially increased the proportion of GA₅ that was recovered from the seeds, and also increased proportions of GA₆, GA₂₂, GA₂₉ and other/tailing radioactivity. These increases were accomplished primarily at the expense of GA₁, GA₃ and GA₈. Secondly, within the GA glucosyl conjugate-like fraction there was more than a three-fold increase in GA₅-G/GE-like substances, and also appreciable increases in GA8- and GA29 conjugate-like metabolites, for the low specific activity feeds. Concomitantly, $GA_{1/3}$ and $GA_{6/22}$ conjugate-like metabolites decreased, as did radioactivity classed as others/tailing.

Thus, increasing the precursor dosage has differential effects on the metabolism. Expressed as a percentage, both GA₁ and GA₃ (which are highly biologically active GAs) and GA_{1/3} conjugate-like metabolites are reduced (relative to high specific activity feeds), while concomitantly the amounts of GA₆ and GA₂₂ increase (primarily GA₆ based on GC-SIM m/z intensity results, data not shown), as do the amounts of GA₅ and GA₅ conjugate-like metabolites. If GA₆ is an intermediate between GA₅ and GA_1 , GA_3 and GA_{29} (see Fig. 3), then the build-up of GA_6 in the low specific activity feeds would indicate that conversion of the epoxide GA₆ to GA₁ and GA₃ is very much a rate-limiting step, whereas the conversion to GA29 is appreciably less affected by increased substrate. Although in the low specific activity feed the proportion of GA₈ is reduced relative to high specific activity feeds, conversion to a GA₈ conjugate-like substance almost

Table 2. Radioactivity (as a percentage of extracted radioactivity) found in [3H]GA₅ and its metabolites from developing seeds of *P. nil* after 43 hr of incubation with high specific activity [1-3H]GA₅ (0.58 µCi of 3.2 Ci/mmol [3H]GA₅ fed to capsule at week 2 of development)*

Purported gibberellins and GA conjugates [glucosides (-G) or glucosyl esters (-GE)]	Radioactivity (%)†
Free GA-like substances	
GA ₁ (2)	2.8
GA ₃ (10)	4.9
GA ₅ (15)	2.5
GA ₅ -methyl ester (18)	0.4
GA ₆ (20)	4.5
GA ₈ (8)	1.0
GA ₂₂ (19)	1.3
GA ₂₉ (6)	1.1
Others and/or tailing	19.9
Sub-total	38.4
GA conjugate-like substances	
GA ₁ -GE (5)	1.2
GA ₁ -O(3)-G (3) and -O(13)-G (4)	2.6
GA ₃ -GE (13)	3.4
GA ₃ -O(3)-G (11) and -O(13)-G (12)	7.8
GA ₅ -GE (17)	4.0
GA ₅ -G (16)	2.7
GA ₆ -G or -GE	1.1
GA ₈ -G (9)	2.2
GA ₂₂ -G- or -GE	5.6
GA ₂₉ -G (7)	1.6
Others	24.2
Sub-total	56.4
Work-up losses	5.2
Total	100

*Identifications are based on sequential silica gel partition column \rightarrow gradient-eluted C_{18} HPLC \rightarrow isocratic C_{18} HPLC elution R_t relative to authentic GAs/GA-glucosyl conjugates (Table 1 and [13, 15]).

†Values were estimated from the silica gel partition column (GA₅) and a combination of gradient-eluted and isocratic-eluted HPLC-RC.

doubles, indicating that this conjugation step, like those of GA_{29} to GA_{29} -G/GE-like substances and GA_{5} to GA_{5} -G/GE-like substances, is considerably less rate-limiting in the presence of increased levels of precursor.

We attempted to obtain an estimate of the endogenous GA_5 present in seeds fed [3H] GA_5 of high specific activity by using GC-SIM, and injecting approximately 1/20 of the radioactivity originally present at the GA_5 R_1 at the silica gel stage of analysis [i.e. < 200 pg of [3H] GA_5 was injected; this takes into account work-up and usage (HPLC-RC) losses]. We were unable to detect the presence of a m/z 416 ion, even though estimates from Yamaguchi et al. [8] imply that 13.5 ng of GA_5 might be expected in such an injection aliquot (e.g. 9 ng of GA_5 was extracted per seed in their study, assuming a 50% water content and an average seed dry weight of 45 mg). However, the values of Yamaguchi et al. [8] are based on collections from a wide range of seed ages, and variation in

GA₅ amounts of 100-fold with varying seed age is to be expected (N. Murofushi, personal communication). Since our GC-SIM procedure was capable of detecting ca 1-2 ng of authentic GA₅, we thus conclude that the level of GA₅ present in our seeds was less than ca 0.7-1.4 ng per seed. Estimates of levels of other endogenous GAs from the high specific activity [³H]GA₅-fed seeds were not attempted since the ³H-labelled fractions were fully utilized in the various HPLC-RC analyses.

If we thus assume that our 2-week-old immature seeds had levels of endogenous GA_5 that were less than 1 ng per seed, then our data (expressed as pg per seed, Table 4) indicates that uptake from the high specific activity feed was at least 4–8 times the endogenous GA_5 level (assuming that all of the radioactivity entered the seed as GA_5), and the low specific activity feed was made at a level of at least 18–37 times the endogenous level of GA_5 . We thus consider that the high specific activity feed was made at a level which should not unduly perturb 'normal' GA metabolism in the seed.

EXPERIMENTAL

Plant material and application of [3H]GA₅. [3H]GA₅ (3.2 Ci/mmol [1G]: 0.58 μ Ci/2 μ l of 95% EtOH/capsule of c a seeds) and [1 ,2- 3H]GA₅ (74 mCi/mmol [1G]: 0.1 μ Ci/2 μ l of 95% EtOH/capsule of up to 4 seeds) were injected into seed capsules of 1 . 1 1 1 cv Violet in situ at the 2-week stage of development, respectively. After 43 hr capsules were harvested and lyophilized.

Extraction of tissue. For high sp. act. feeds 31 lyophilized seeds (1.53 g) from 28 capsules were extracted and extracts purified according to the method of Koshioka et al. [14]. For low sp. act. feeds 90 lyophilized seeds (4.3 g) from 57 capsules were extracted and processed as noted above.

Analytical methods. Gradient eluted silica gel partition CC [17] was followed by gradient-eluted (see Fig. 2) C₁₈ reverse-phase HPLC [15] for silica gel partition column fraction groupings, and for the H₂O-soluble fraction [14]. Isocratic or very shallow gradient-eluted HPLC was used to separate discrete peak groupings further from the earlier gradient-eluted HPLC. The solvent systems shown in Table 1 were: (A) 15 % MeOH in aq. 1 % HOAc, (B) 23.5% MeOH in aq. 1% HOAc, (C) 30% MeOH in aq. 1% HOAc, (D) 40% MeOH in aq. 1% HOAc, (E) 10% MeOH to 13% MeOH in aq. 1% HOAc over 60 min; flow rate 2 ml/min. GC-SIM conditions: A Hewlett-Packard 5972A gas chromatograph and a 5970A Series mass selective detector fitted with a direct capillary interface for on-column injection were used. Column: cross-linked 5% phenylmethyl silicone, length 12.5 m, film thickness 0.3 mm, i.d. 0.2 mm; head pressure 6 psi, E.M. Volts 1400, initial temp. 60°, final temp. *250°, **260°, ***270° initial time 1 min, programme rate 25°/min, interface temp. 280°. The HPLC fractions from the low sp. act. feeds were analysed by using GC-SIM after derivatization to the methyl ester, TMSi ether, using ethereal CH2N2 and TRI-SIL (Pierce Chemical Co.).

Hydrolysis of GA glucosyl conjugate fractions. Procedures were as described in ref. [13].

Acknowledgements—We gratefully acknowledge with thanks samples of authentic GAs and/or GA glucosyl conjugates from N. Takahashi (University of Tokyo, Japan), G. Sembdner (Institut für Biochemie der Pflanzen, Halle, G.D.R.) and J. MacMillan (University of Bristol, U.K.). This work was supported by Natural Sciences and Engineering Research Council Canada Grant A-2585 to R.P.P.

Table 3. Sequential analysis (silica gel R, → gradient-eluted C₁₈ HPLC R, → capillary GC R, → GC-SIM) from extracts of 90 seeds, where low specific activity (74 mCi/mmol) [1,2-3H]GAs (0.1 µCi per capsule) was fed to capsules of Pharbitis

Gibberellin or	Fraction No.	l	ao (uim) a		MIN GREEN			STM concessions unitity and office observed donors.		
punoduoo	partition column	HPLC-RC	GC-SIM		in in	in parentheses (m/z) value)	s (m/z val	ue)		Identity
Compound	Fraction II	32–33	12.3	416 (380)	401 (66)	385 (12)	357 (98)	343 (106)	299 (217)	GA,
GA₃t	11-13	32–33	12.3	416 (380)	401 (61)	385 (10)	357 (50)	343 (47)	299 (98)	,
Compound‡	Fraction II	28–29	12.5	432 (456)	417 (44)	403 (20)	373 (55)	303 (465)	235 (193)	GĄ
GA ₆ ‡	13–16	28-29	12.5	432 (456)	417 (59)	403 (23)	373 (69)	303 (414)	235 (257)	•
Compound‡	Fraction III	26–27	13.2	506 (407)	491 (41)	447 (30)	416 (9)	377 (48)	313 (45)	GA,
GA ₁ ‡	19-22	26-27	13.2	506 (407)	491 (40)	447 (34)	416 (10)	377 (54)	313 (33)	•
Compound‡	Fraction III	26-27	13.5	504 (658)	489 (54)	473 (15)	445 (46)	414 (4)	370 (72)	ĞĄ
GA3‡	19-22	26–27	13.5	504 (658)	489 (64)	473 (15)	445 (44)	414 (6)	370 (73)	1
Compound‡	Fraction III	24-25	13.2	506 (519)	491 (54)	477 (21)	447 (31)	375 (39)	303 (157)	GA,
GA ₂₉ ‡	23–26	24-25	13.2	506 (519)	491 (48)	477 (13)	447 (27)	375 (64)	303 (88)	ì
Compound§	Fraction IV	14-15	13.6	594 (1019)	(19) 675	535 (68)	504 (25)	448 (202)	379 (108)	GA,
GA ₈ §	26-28	14-15	13.5	594 (1019)	579 (48)	535 (62)	504 (22)	448 (230)	479 (182)	•

*Based on estimates of amounts of endogenous GAs that might be expected in these immature seeds (see ref. [8]), and on amounts (by calculation of pecific activity) that would be derived from the [3H]GAs feed (Table 4). GAs, GAs and GAs, SIM data may represent both endogenous GAs and metabolites of [3H]GAs; whereas for GA1, GAs, and GA6, SIM data probably represent only [3H]GA5, or metabolites of [3H]GA5. For each of the parent ion m/z scans, there was only one peak (at the GC R, noted) of significant intensity. This indicates that the radioactive peak eluted from the HPLC did not contain significant amounts of other metabolites with the same parent ion.

[†]GC column temperature 250°.

[‡]GC column temperature 260°.

[§]GC column temperature 270°.

Table 4. A comparison of metabolism between high (3.2 Ci/mmol, 0.58 μCi fed/capsule) and low (74 mCi/mmol, 0.1 μCi fed/capsule) specific activity feeds of [3H]GA₅ to developing (week 2) seeds of P. nil*

Purported gibberellins	% radioactivity† and pg [3H]GA‡ per seed present 43 hr after feeding [3H]GA ₅ §			
and GA conjugates	High	sp. act	Low	sp. act
[glucosides (-G) or glucosyl esters (-GE)]	%	Pg	%	pg
Free GA-like substances		-		
GA ₈	1.0	59	0.3	80
GA ₂₉	1.1	65	2.9	771
GA _{1/3}	7.7	455	4.8	1277
GA _{6/22}	5.8	343	15.5	4123
GA ₅	2.4	142	10.5	2793
GA ₅ -Me	0.4	24		_
Others/tailing	19.9	1178	9.9	2633
Sub-total	38.4	2273	43.9	11677
GA conjugate-like substances				
GA ₈ -G/GE	2.2	130	4.2	1117
GA ₂₉ -G/GE	1.6	95	2.4	638
GA _{1/3} -G/GE	15.0	888	11.4	3032
$GA_{6/22}$ - G/G	6.7	397	2.6	692
GA ₅ -G/GE	6.7	397	23.0	6118
Others/tailing	24.2	1433	11.1	2953
Sub-total	56.4	3339	54.7	14550
Work-up losses	5.2	308	1.4	372
Total	100.0	5920	100.0	26600

^{*}The high (HSA) and low (LSA) specific activity feeds of [1-3H]GA₅ and [1,2-3H]GA₅, respectively, were made at week 2 of seed development, and the seed was harvested 43 hr after injection of the GA₅ into the seed capsule. †Values were estimated from the silica gel partition column (GA5) and the

gradient-eluted HPLC-RC.

§The dosage of GA_5 injected into the capsules in the LSA feed was 7.45 times that of the HSA feed, but uptake of GAs (calculated from specific activity) into the seed was only 4.5-fold higher for the LSA feed. Identifications for HSA metabolites are as noted in Table 1, and for LSA free GA metabolites are as noted in Table 3. Identifications for LSA conjugate-like metabolites are based on sequential silica gel partition column \rightarrow gradient-eluted C_{18} HPLC-RC elution R_1 (see Table 1 for R_2 of authentic GA glucosyl conjugates). Certain radioactive fractions are grouped in Table 4 (e.g. $GA_{1/3}$, $GA_{6/22}$) since for LSA feeds the entire peak groupings from gradient-eluted C_{18} HPLC were subjected to GC-SIM without prior separation of the component GAs by isocratic C_{18} HPLC.

[‡]Calculated from specific activity; values may be underestimated if loss of ³H took place during metabolism.

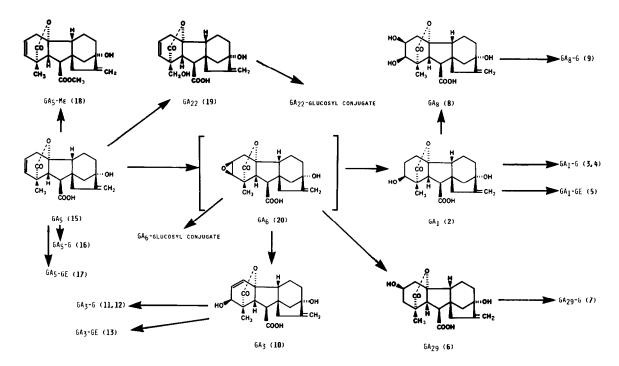


Fig. 3. Pathways of [3H]GA₅ metabolism in P. nil seeds. The square brackets around GA₆ indicate that its role as an intermediate is only postulated.

REFERENCES

- Yokota, T., Murofushi, N., Takahashi, N. and Tamura, S. (1971) Agric. Biol. Chem. 35, 583.
- Yokota, T., Murofushi, N., Takahashi, N. and Tamura, S. (1971) Agric. Biol. Chem. 35, 573.
- Takahashi, N., Yokota, T., Murofushi, N. and Tamura, S. (1969) Tetrahedron Letters 25, 2077.
- Yokota, T., Takahashi, N., Murofushi, N. and Tamura, S. (1969) Tetrahedron Letters 25, 2081.
- Yokota, T., Takahashi, N., Murofushi, N. and Tamura, S. (1969) Planta (Berlin) 87, 180.
- Murofushi, N., Takahashi, N., Yokota, T. and Tamura, S. (1968) Agric. Biol. Chem. 32, 1239.
- Jones, M. G., Metzger, J. D. and Zeevaart, J. A. D. (1980) Plant Physiol. 65, 218.
- Yamaguchi, I., Fujisawa, S. and Takahashi, N. (1982) Phytochemistry 21, 2049.
- 9. Barendse, G. W. M., Kende, H. and Lang, A. (1968) Plant

- Physiol. 43, 815.
- Durley, R. C., Railton, I. D. and Pharis, R. P. (1973) *Phytochemistry* 12, 1609.
- 11. Yamane, H., Murofushi, N. and Takahashi, N. (1975) Phytochemistry 14, 195.
- Sembdner, G., Weiland, J., Aurich, O. and Schreiber, K. (1968) Plant Growth Regulators, SCI Monograph, No. 31, pp. 70-86.
- Koshioka, M., Douglas, T. J., Ernst, D., Huber, J. and Pharis, R. P. (1983) Phytochemistry 22, 1577.
- Koshioka, M., Takeno, K., Beall, F. D. and Pharis, R. P. (1983) Plant Physiol. 73, 398.
- Koshioka, M., Harada, J., Takeno, K., Noma, M., Sassa, T., Ogiyama, K., Taylor, J. S., Rood, S. B., Legge, R. L. and Pharis, R. P. (1983) J. Chromatogr. 256, 101.
- Murofushi, N., Durley, R. C. and Pharis, R. P. (1974) Agric. Biol. Chem. 38, 475.
- Durley, R. C., Crozier, A., Pharis, R. P. and McLaughlin, G. E. (1972) Phytochemistry 11, 3029.